翻訳と辞書
Words near each other
・ Slope efficiency
・ Slope field
・ Slope Formation
・ Slope mining
・ Slope number
・ Slope One
・ Slope Point
・ Slope rating
・ Slope Road, New Brunswick
・ Slope side
・ Slope stability
・ Slope stability analysis
・ Slope stability probability classification
・ Slope, Hrpelje–Kozina
・ Slope-former
Sloped armour
・ Sloper
・ Sloper antenna
・ Sloperia
・ Slopestyle
・ Sloping Island
・ Sloping Island Group
・ Slopná
・ Slopné
・ Slopper
・ Sloppiness
・ Sloppiness space
・ Slopping out
・ Sloppy giuseppe
・ Sloppy identity


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Sloped armour : ウィキペディア英語版
Sloped armour

Sloped armour is armour that is neither in a vertical nor a horizontal position. Such "angled" armour is often mounted on tanks and other armoured fighting vehicles (AFVs), as well as naval vessels such as battleships and cruisers. Sloping an armour plate makes it harder to penetrate for antitank-weapons, such as armour-piercing shells (kinetic energy penetrators) and rockets, if they take a more or less horizontal path to their target, as is often the case. The better protection is caused by three main effects.
Firstly, a projectile hitting a plate at an angle other than 90° has to move through a greater thickness of armour, compared to hitting the same plate at a right-angle. In the latter case only the plate thickness (the normal to the surface of the armour) has to be pierced; increasing the armour slope improves, for a given plate thickness, the armour's level of protection at the point of impact by increasing the thickness measured in the horizontal plane, the angle of attack of the projectile. The protection of an area, instead of just a single point, is indicated by the average horizontal thickness, which is identical to the area density (in this case relative to the horizontal): the relative armour mass used to protect that area.
If you increase the horizontal thickness by increasing the slope while keeping the plate thickness constant, you need a longer and thus heavier armour plate to protect a certain area. This improvement of protection is simply equivalent to the increase of area density and thus mass, and can offer no weight benefit. Therefore in armoured vehicle design the two other main effects of sloping have been the motive to apply sloped armour.
One of these is a more efficient envelopment of a certain vehicle volume by armour. In general, more rounded forms have a lesser surface relative to their volume. As in an armoured vehicle that surface has to be covered by heavy armour, a more efficient form can lead to a substantial weight reduction or a thicker armour for the same weight. Sloping the armour can lead to a better approximation of an ideal rounded form.
The final effect is that of deflection, deforming and ricochet of a projectile. When it hits a plate under a steep angle, its path might be curved, causing it to move through more armour – or it might bounce off entirely. Also it can be bent, reducing its penetration. However, these effects are strongly dependent on the precise armour materials used and the qualities of the projectile hitting it: sloping might even lead to a better penetration. Shaped charge warheads may fail to penetrate and even detonate when striking armour at a highly oblique angle.
The sharpest angles are usually seen on the frontal glacis plate, both as it is the hull side most likely to be hit and because there is more room to slope in the longitudinal direction of a vehicle.
==The principle of sloped armour==

The cause for the increased protection of a certain point ''at a given normal thickness'' is the increased line-of-sight (''LOS'') thickness of the armour, which is the thickness along the horizontal plane, along a line describing the oncoming projectile's general direction of travel. For a given thickness of armour plate, a projectile must travel through a greater thickness of armour to penetrate into the vehicle when it is sloped.
The mere fact that the LOS-thickness increases by angling the plate is not however the motive for applying sloped armour in armoured vehicle design. The reason for this is that this increase offers no weight benefit. To maintain a given mass of a vehicle, the area density would have to remain equal and this implies that the LOS-thickness would also have to remain constant while the slope increases, which again implies that the normal thickness decreases. In other words: to avoid increasing the weight of the vehicle, plates have to get proportionally thinner while their slope increases, a process equivalent to shearing the mass.
Sloped armour provides increased protection for armoured fighting vehicles through two primary mechanisms. The most important is based on the fact that to attain a certain protection level a certain volume has to be enclosed by a certain mass of armour and that sloping may reduce the surface to volume ratio and thus allow for either a lesser relative mass for a given volume or more protection for a given weight. If attack were equally likely from all directions, the ideal form would be a sphere; because horizontal attack is in fact to be expected the ideal becomes an oblate spheroid. Angling flat plates or curving cast armour allows designers to approach these ideals. For practical reasons this mechanism is most often applied on the front of the vehicle, where there is sufficient room to slope and much of the armour is concentrated, on the assumption that unidirectional frontal attack is most likely. A simple wedge, such as can be seen in the hull design of the M1 Abrams, is already a good approximation that is often applied.
The second mechanism is that shots hitting sloped armour are more likely to be deflected, ricochet or shatter on impact. Modern weapon and armour technology has significantly reduced this second benefit which initially was the main motive sloped armour was incorporated into vehicle design in the Second World War.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Sloped armour」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.